
December 1997 The Delphi Magazine 27

Delphi Meets COM: Part 1
by Dave Jewell

COM, or Microsoft’s Component
Object Model, is the foundation

upon which an increasing amount
of Windows technology is based.
You will no doubt be aware that
ActiveX controls are implemented
as COM objects. OLE technology is
also built around COM and much of
the functionality of the Windows
Explorer shell is only accessible
through COM interfaces. Micro-
soft’s Internet Explorer is itself
built up from reusable, COM based
components and even the friendly
face of Office97 is provided by
courtesy of a set of COM objects
residing in proprietary Microsoft
DLLs.

In this series on COM technol-
ogy, Steve Teixeira and mysel will
be looking at what COM actually is,
describing how you can interact
with COM components (with
Delphi as the primary program-
ming tool) and examining many
practical applications such as shell
extensions, ActiveX components
and more. I’ll start off and Steve will
come in later in the series.

First of all, to gain a solid under-
standing of COM, we need to famil-
iarise ourselves with the COM
philosophy: the concepts upon
which COM itself is based. That’s
the focus of this introductory arti-
cle which places COM in its histori-
cal context, explains the basics of
how COM works and the unique
benefits which it brings. This is
quite a lengthy introduction (the
real meat starts next month!) but
I’d strongly encourage you to read
it carefully. To fully appreciate the
versatility of COM, it’s important to
grasp how and why it came into
being in the first place.

Why Microsoft Needed COM...
Microsoft’s work on COM evolved
out of necessity from the compa-
ny’s earlier work on OLE, what was
once known as their Object Linking
and Embedding technology. OLE
was (and still is!) a system which
enables one application to work

with data that is created and man-
aged by a completely separate
application. For example, consider
the classical example of placing an
Excel spreadsheet into a Word
document. In OLE terms, the
spreadsheet is embedded in the
Word document. The enclosing
document is known as a compound
document because it incorporates
data from more than one applica-
tion. In this example, the enclosing
application, Word, is known as the
OLE container because it contains
data from another application.

When Microsoft first designed
OLE, the critically important thing
was that the data had to be live. So,
for example, if any change takes
place in the original Excel spread-
sheet data, then any open com-
pound document in which that
spreadsheet is embedded must
immediately reflect the change.
This allows OLE technology to be
used, for example, in financial mar-
kets, where share information is
often being continually updated.
The idea of having live embedded
data is very intuitive from the end-
user’s perspective, but from a pro-
gramming perspective it was very
difficult to achieve. It should be
obvious that OLE necessitates a lot
of co-operative interaction bet-
ween the OLE container and the
server application (the application
which originally created the
embedded object).

Clearly, Word does not know
how to interpret Excel data or draw
Excel spreadsheets: the container
application needs to notify the
server whenever all or part of an
embedded object needs to be
redrawn, and it must tell the server
what part of the display area
should be redrawn. Similarly, if our
embedded spreadsheet is updated
(possibly even over a network),
there must be a mechanism for
notifying the container of any
changes.

Even the simple act of saving a
compound document requires

co-operation between server and
container. Word does not know
how to save an Excel spreadsheet
as part of a Word document, it’s
the server application (Excel itself)
which must stream the necessary
data into the compound document
at the appropriate point. From all
this we can see that OLE necessi-
tates a large amount of two-way
conversation between the server
and container applications, and
the problem is obviously com-
pounded (pun strictly intentional!)
if a compound document contains
embedded objects from many
different applications.

Necessity, The
Mother Of Invention
Earlier, I said that COM evolved out
of necessity and that’s absolutely
true. Microsoft’s earliest imple-
mentation of OLE, version 1.0,
quickly gained a reputation as
being horrendously slow and cum-
bersome. Want to slow your
machine down to a crawl, or even a
standstill? Just do something that
involves an embedded OLE object
and off you go... or not, as the case
may be. OLE 1.0 was woefully
inadequate for one simple reason:
it was built on top of the (now mer-
cifully obsolete) DDE protocol.
DDE, or Dynamic Data Exchange
was a scheme for allowing different
applications to communicate with
one another using the ordinary
Windows messaging system. As
you can imagine, this wasn’t a
recipe for blistering performance,
see Figure 1.

DDE was easy to implement, but
very slow in operation, it even used
timeouts to detect whether or not
the other end of the DDE connec-
tion had died! Not only was the
whole thing an exercise in slow
motion, but regretfully it wasn’t
particularly robust either. Even
before OLE 1.0 was shipping,
Microsoft’s engineers realised that
they needed a mechanism that was
radically different and much more

28 The Delphi Magazine Issue 28

➤ Figure 1: Here's why Microsoft's initial implementation of OLE
was no speed demon. Built on top of the slow and unreliable
DDE technology, OLE quickly gained an unenviable reputation.
This illustration demonstrates why it is that, sooner rather than

efficient to communicate between
different applications. The result
of their deliberations was COM, a
system much better suited to meet
the increasing demands of the OLE
architecture.

Did I say increasing demands?
Oh, yes. While working on the
underlying inter-process commu-
nication problem, Microsoft’s engi-
neers were simultaneously forging
ahead with ambitious enhance-
ments to OLE itself. With OLE 2.0, it
became possible to edit an embed-
ded document in place. Effectively,
the server application temporarily
‘takes over’ the container window,
adding its own menus, toolbars
and so forth. In order to make this
work, the amount of container and
server interaction is greatly
increased. For example, if you
double click an embedded Micro-
soft Equation object in your Word
document, you’ll see Word’s
menus instantly replaced with
those of the Equation server.
Whenever in-place editing session
is started, the server must negoti-
ate with the container regarding
the placement of menus and so
forth.

From the above discussion, it
should be obvious that COM 2.0

simply would not have been
possible without the introduction
of COM technology, thus dispens-
ing with DDE and providing a more
efficient mechanism for different
applications to communicate with
one another.

VBX Controls:
Gone, And Best Forgotten...
While all this OLE development
was going on, Microsoft were also
contemplating a suitable succes-
sor to Visual Basic’s 16-bit custom
control technology.

As you may be aware, VBX files
were a specialised type of DLL that
could be accessed at design-time
by the Visual Basic design environ-
ment, and at run-time by the run-
ning application. However, the
design of these controls was
unashamedly 16-bit: VBX controls
used internal 16-bit pointers and
offsets which made it very difficult
to author them using compilers
that only understood 32-bit point-
ers, Delphi and Turbo Pascal being
prime examples. The internal
architecture of VBX controls was
also, it has to be said, somewhat
baroque. Something different was
needed for the brave new world of
32-bit programming.

At an early stage in the develop-
ment of OLE 2.0, Microsoft’s
engineers realised that COM repre-
sented a much more general
mechanism than was required by
OLE alone. It could kill two birds
with one stone: providing fast
inter-process communication for
OLE, while also permitting an OLE-
based control to efficiently inter-
act with a container application or
design environment. They quickly
came to appreciate that just as
OLE allowed one application to
seemingly work with data belong-
ing to another program, so it was
possible to embed any arbitrary
type of control into a containing
application. Just as a server appli-
cation could notify a container
application that a spreadsheet had
been updated, a control could use
a similar mechanism to (for exam-
ple) tell the containing application
that it had been clicked by a
mouse. Thus was born the idea of
OLE controls.

Although this was a great leap
forward from a technical point of
view, it represented something of a
marketing disaster. Largely
because of the OLE 1.0 fiasco, OLE
was still perceived as being
enormously complicated, difficult
to program, buggy and cumber-
some to use. Surely Microsoft wer-
en’t planning to create custom
controls using the same technol-
ogy? Surely not! Once the market-
ing department woke up to the
problem, OLE controls were
quickly re-christened OCX Controls
in order to put some distance
between the original DDE-based
system, and the newer COM-based
technology. More recently, Micro-
soft’s control technology has again
been re-christened, emerging as
ActiveX.

Note that this shouldn’t be taken
as implying that the three terms
are completely synonymous, that
would be something of an over-
simplification. Microsoft have con-
tinued to refine COM technology
and the emergence of the Internet
has meant that being able to create
small, easily downloadable (so-
called ‘light weight’) controls is
now very important. Modern
ActiveX components are very

30 The Delphi Magazine Issue 28

much smaller and less complex
than the original OLE controls.

The COM Advantage...
A moment’s thought should con-
vince you that designing an inter-
face to an embeddable control is
potentially a very complex busi-
ness. How does Visual Basic know
what properties to display when a
particular control is selected? How
can you work with an arbitrary
ActiveX control inside Visual C++
or Delphi? The design environment
cannot know, in advance, how
many methods, properties and
events the control will export. It
doesn’t know how to trigger
events, or be triggered by them. It
doesn’t know what parameters
should be passed in event notifi-
ers, or what parameters are
expected by each method call.
How do you provide all this sort of
information to the design environ-
ment? The answer, of course, is
that general purpose controls
must be able to ‘advertise’ their
interface, just as an embedded OLE
object needs to be able to commu-
nicate certain aspects of its behav-
iour to the container application.

Microsoft realised that one of
the key requirements of COM was
the ability to ‘discover’ a software
interface programmatically at run
time. In other words, it must be
possible to query a software
component in order to determine
what its programming interface is.
This is perhaps the most funda-
mental characteristic of the COM
architecture.

Contrast this with the traditional
DLL-based approach. If a client
program knows that a given set of
routines exist in a DLL, and it
knows what parameters are
required by those routines, then it
can make use of the DLL. Con-
versely, if the client program (or
rather, the author of the client soft-
ware) doesn’t have access to the
DLL interface specification, then
it’s impossible to work with the
DLL. What it really boils down to is
this: DLLs don’t include the run-time
information required to make use of
them. It’s a bit like being handed a
box of unfamiliar tools: you’re told
that the tools are all very useful,

but you’ve got no information on
what each tool is or how to use it.

Another significant advantage of
COM is the fact that it’s a language-
neutral technology. This is just a
fancy way of saying that you can
use COM from any programming
language whose compiler under-
stands how to call a COM interface.
This includes Visual C++ 5.0, Delphi
3.0 and Visual Basic 5.0. It also
includes (to the annoyance of
Java’s portability purists!) Micro-
soft’s Visual J++ development
system, which overloads certain
Java language constructs to
provide direct support for COM
programming.

Let’s summarise the COM bene-
fits we’ve discussed so far:
➢ COM provides a fast, efficient

basis for different software
modules (by which I mean ap-
plications, controls, services,
or whatever) to communicate
with one another.

➢ COM enables the programming
interface to a module to be in-
terrogated programmatically,
thus making COM a suitable
foundation for the building of
reusable components and
controls.

➢ COM is language neutral, it will
work with any programming
language that understands
COM interfaces and, if you’re
feeling suitably masochistic,
it’s even possible to call COM
interfaces directly from
assembler code.

This isn’t an exhaustive list of COM
benefits by any means. For exam-
ple, the introduction of DCOM
(Distributed COM) means that
client software on one machine can
make use of software services run-
ning on another machine in a net-
work. DCOM hides the fact that the
COM object isn’t local, it’s
accessed just as if it were local by
the client code.

So What’s An Interface?
Up to now, I’ve used the word ‘inte-
rface’ a number of times in a very
loose sense: I haven’t given a clear
definition of what I mean by the
word. In the COM sense, an inter-
face can be defined as a set of
related routines that are grouped

together into one logical entity. You
could argue that the Windows API
is an ‘interface’ in this sense,
because it defines a set of routines
(thousands of them!) which relate
to Windows programming. How-
ever, routines in a COM interface
are normally related to one
another much more strongly than
that. If you imagine the Windows
API divided up into functional
groups, we might have one group
devoted to memory management,
another group for file I/O, a third
for window management and so
on. In principle, API routines
grouped together in this way could
be divided up into a number of
COM interfaces, where each inter-
face corresponds to a particular
functional group.

All the routines in a single COM
interface can be easily accessed
once you’ve got yourself an inter-
face pointer for that interface. An
interface pointer is a 32-bit quan-
tity which you can think of as a
‘magic cookie’ through which you
access the various routines of the
interface. If this sounds vague,
then just think of things in Delphi
programming terms: if I hand you a
32-bit pointer to a TMemo compo-
nent, you can immediately start
calling that component’s methods.

The fact is, this analogy is a lot
closer than you might think. If
you’re familiar with the ‘nuts and
bolts’ of Delphi objects (I recom-
mend the excellent Delphi Compo-
nent Design by Danny Thorpe,
Addison-Wesley, ISBN: 0-201-
46136-6) then you’ll know that
every type of Delphi object has an
associated VMT or Virtual Method
Table. The VMT is really just an
array of pointers to the different
virtual methods supported by the
object. The Delphi compiler knows
what array index to use for each
virtual method. If you understand
this then, take heart, it’s pretty
much the same story with COM. At
it’s simplest, an interface pointer is
essentially a pointer to an array of
method pointers just as with COM.

I said earlier that it was possible
to interrogate a COM object
programmatically to discover
what programming interface it
supports. But, how do you

December 1997 The Delphi Magazine 31

communicate with the COM object
in the first place if you don’t know
what interface is there? To resolve
this chicken-and-egg situation, all
COM objects must support a spe-
cial interface called IUnknown. By
convention, a COM interface name
always begins with a capital ‘I’, just
as you always use a capital ‘T’ to
begin a Delphi type name.

Once you start communicating
with a COM object through the IUn-
known interface, you can easily get
the object to tell you what other
interface(s) it supports. What,
more than one interface? That’s
right, an important characteristic
of the COM architecture is that
multiple interfaces can be sup-
ported by a single COM object.
Most COM objects support at least
two interfaces: IUnknown and the
real interface that provides the
‘business-end’ functionality of the
component. You can think of IUn-
known as being a ‘gateway’ to any
other interfaces supported by the
COM object. Having obtained a
pointer to IUnknown, the client soft-
ware can then use this to retrieve a
pointer to the interface its really
interested in. It’s for this reason
that, in order to qualify as a fully

paid up member of the COM com-
munity, every valid COM object
absolutely must implement the
IUnknown interface. You also need
to appreciate that every other
interface provided by a COM object
inherits from IUnknown.

Note that since you’re coming
from an object-oriented Delphi
background, you’ll be familiar with
the idea of inheritance where a
class ‘inherits’ all the functionality
of an ancestor class. In C++ or
Delphi, a derived class inherits all
the methods of the ancestor class
together with any member fields
that might be defined. This is an
example of code inheritance, call-
ing methods of a derived object
will often cause code to be exe-
cuted in methods of the ancestor
class. COM does not support this
type of inheritance. It is not possi-
ble to take one COM object,
directly derive another object from
it and expect the original object to
be called as and when appropriate.
Instead, COM offers interface
inheritance. With interface inheri-
tance, you simply inherit the ‘spec-
ification’ of how that object
behaves including all the methods
defined in the ancestor interface.

Why is that every COM interface
has to derive from IUnknown? The
answer is polymorphism, the abil-
ity to treat the same object as
though it were several different
things. Because every COM inter-
face includes the methods needed
by IUnknown, we can quite legiti-
mately pass any interface pointer
to any routine that expects an IUn-
known interface, and everything will
work as advertised. Just as impor-
tantly, because all interfaces
include these three methods (and
notably, the QueryInterface call
which we’ll be looking at soon) it’s
very easy to find our way around a
COM object no matter what inter-
face pointer we currently have. As
we shall see, the QueryInterface
method is the all-important call for
retrieving other interfaces of a
COM object. If the QueryInterface
method wasn’t present in every
interface then we’d have to find our
way back to the original IUnknown
interface before going in search of
another interface. If this isn’t clear
to you now, it will be after I’ve
explained how QueryInterface
works.

One final remark about polymor-
phism in the context of COM: just
as you can pass any interface to a
routine that expects a IUnknown
interface, in the same way, you can
pass different implementations of
the same interface to the same rou-
tine. To put this another way,
suppose we had a hypothetical
COM module such as a spell-
checker module. Imagine that our
spell-checker module imple-
mented a spell-checking interface
called ISpellCheck. By providing
them with the documentation for
this interface, many different
manufacturers would be able to
create different implementations
of this interface, and the same
application would be able to work
with them all.

Even if some manufacturers cre-
ated a new enhanced interface,
existing applications would still
work provided that the new inter-
face inherited from ISpellCheck.
This may seem like an obvious
point, but it’s obviously crucial to
COM’s interoperability. After all,
the only reason you can plug an

➤ Figure 2: Increasingly, more and more Windows services are only
accessible via COM. If you want to have a meaningful relationship
with the Windows shell, then you need to speak COM. Here, you
can see the various menu entries that Merlin and WinZIP have
added to this shell context menu.

32 The Delphi Magazine Issue 28

unknown ActiveX control into a
Web browser or a Delphi applica-
tion is because the control imple-
ments the documented interfaces
needed to function in such an envi-
ronment. It would be a pretty poor
browser that was ‘hard-wired’ to
recognise only certain controls!

IUnknown:
Mother Of All Interfaces...
OK, enough abstract theory. Let’s
begin to put things in concrete
terms. The IUnknown interface con-
tains exactly three methods. These
are AddRef, Release and QueryInter-
face. Any implementation of IUn-
known must provide these three
methods and, because all other
COM interfaces inherit from IUn-
known, any other interface must like-
wise provide these three methods.

The code snippet in Listing 1
shows the Delphi 3.0 definition of
IUnknown, taken from the
SYSTEM.PAS file.

For now, don’t worry about the
gobbledy-gook on the second line.
That’s an example of a GUID or
CLSID, something that I’ll be
describing soon. The most impor-
tant of the three IUnknown methods
is QueryInterface. It’s through this
method that you can ask a COM
object whether or not it supports a
particular interface. If it does, then
it will give you back a pointer to the
interface. If not, then a Nil value is
returned and an error code is
reported. QueryInterface returns
an error code through the function
result.

As the first parameter to Query-
Interface, you specify IID, the ID of
the interface that you are inter-
ested in. As you can see from the
above, the type of this parameter is
TGUID: it’s another GUID.

For now, it’s easiest to think of a
GUID as a large number that is used
to uniquely identify a particular
interface. When you use ready-
made COM objects, the program-
ming documentation will include a
list of these identifiers. For exam-
ple, Borland’s SHLOBJ.PAS file
defines a GUID called IID_IShell-
Folder. This is one of the COM-
based interfaces which is used to
communicate with the Windows
Explorer shell. Again, be patient for

now, I’ll be discussing GUIDs in
more detail shortly.

The second parameter to Query-
Interface is an out parameter. This
is new Object Pascal syntax that
was introduced with Delphi 3 to
support COM programming. For
now, it’s easiest to think of an out
parameter as being similar to a var
parameter, its value is changed as
a result of the function call. Query-
Interface examines the interface
ID, IID, determines if that interface
is supported by the COM object,
and if so, returns an interface
pointer for the object in the Obj
parameter. If the specified inter-
face is supported, then zero is
returned as the function result. If
the interface isn’t supported, then
E_NoInterface (a constant defined
in WINDOWS.PAS) is returned.
Other function results are possi-
ble, including the notorious
E_Unexpected. This indicates that
something has gone deeply wrong
with COM itself and we should
abandon ship at the earliest oppor-
tunity! It’s worth nothing that in
COM, error codes are negative, so
testing the function result for being
greater than or equal to zero is a
sufficient test for success.

Just to give a flavour for using
QueryInterface in the real world,
here’s another code snippet
(Listing 2), this time taken from
Borland’s AXCTRLS.PAS file, part
of the VCL source code.

I’m not too sure what this rou-
tine is doing and I don’t much care!
The important thing is to look care-
fully at the call to QueryInterface in

the second line of code. The Query-
Interface method is called on the
Source object, which is of type IUn-
known. If successful, it returns an
interface pointer to a IConnection-
PointContainer interface in the
variable CPC. The FindConnection-
Point method of this new interface
is immediately called and this, in
turn, gives us a pointer to an ICon-
nectionPoint interface in CP.
Finally, the Advise method of this
last interface is called. Wheels
within wheels!

This routine is an excellent
example of how you can ‘find your
way around’ the different inter-
faces of a COM object using Query-
Interface. In the above example,
you shouldn’t think of CPC as a dif-
ferent object to the original Source
object. Both Source and CPC are
interface pointers of the same
object, but each exposes a different
interface.

Incidentally, you should now
appreciate why it is that all inter-
faces are derived from IUnknown.
Suppose we’ve got a IConnection-
PointContainer interface pointer
for the Source object and we want
to get to some other interface of
the same object. Whatever inter-
face pointer we’ve got, we can
immediately call QueryInterfaceon
it in order to get a pointer to the
new interface. Without this capa-
bility, we’d have to always carry
around a pointer to the object’s
IUnknown interface.

This will no doubt raise other
questions in your mind such as
how do we get an initial IUnknown

{ Connect an IConnectionPoint interface }
procedure InterfaceConnect(const Source: IUnknown; const IID: TIID;
const Sink: IUnknown; var Connection: Longint);

var
CPC: IConnectionPointContainer;
CP: IConnectionPoint;

begin
Connection := 0;
if Source.QueryInterface(IConnectionPointContainer, CPC) >= 0 then
if CPC.FindConnectionPoint(IID, CP) >= 0 then
CP.Advise(Sink, Connection);

end;

➤ Listing 2

IUnknown = interface
['{00000000-0000-0000-C000-000000000046}']
function QueryInterface(const IID: TGUID; out Obj): Integer; stdcall;
function _AddRef: Integer; stdcall;
function _Release: Integer; stdcall;

end;

➤ Listing 1

December 1997 The Delphi Magazine 33

pointer to an object? Again, this
will become clearer as we work our
way through the basics of COM
programming: I’ve got to defer an
explanation of that until we’ve dis-
cussed the idea of CLSIDs (class
identifiers) and GUIDs. For now,
just take it on trust that it can be
done.

The AddRef and Release methods
are simpler to use (they take no
parameters), but very important:
some COM objects might be imple-
mented through a separate appli-
cation while other COM objects
might be implemented through a
Windows DLL. Either way, the
application or DLL needs to know
when it can safely be unloaded
from memory. It’s not adequate for
the client application to explicitly
unload the COM object from
memory since it might be in use by
more than one client at the same
time. It would obviously be pretty
disastrous if Client A were to
unload an in-use COM object from
under the nose of Client B!

In order to address this problem,
Microsoft introduced the idea of

reference counting. If you’re
familiar with the Windows API,
you’ll know that this concept
appears in various other places
within Windows. For example,
when an application wants to show
or hide the cursor, it calls a routine
called ShowCursor. If this routine is
called multiple times, the system
maintains an internal reference
count to remember how many
times the cursor has been hidden.
The cursor will only reappear
when the number of ‘hide’ calls is
matched by the same number of
‘show’ calls. In the same way, the
Windows memory manager has
historically used routines such as
GlobalLock and GlobalUnlock to
lock and unlock memory blocks. As
before, an internal reference count
is used to ensure that a block isn’t
truly unlocked until the number of
unlocks matches the number of
locks.

It’s just the same with COM
objects. Many different clients can
be using the same object, but none
should need to know about the
existence of the others and cannot

therefore know whether or not a
COM object should be released.
Instead, the COM object itself main-
tains a reference count which is
incremented each time a client
calls AddRef and decremented
whenever there’s a call to Release.
When a COM object receives a
Release call which takes its refer-
ence count back down to zero,
then it automatically destroys
itself and is removed from
memory.

This seems pretty straight-
forward, but there’s one small
wrinkle: it should be obvious that
when a COM object first hands out
a new interface pointer, it must
immediately set the reference
count to one. If it didn’t do so, then
it would be in use, but with a refer-
ence count of zero. To put this
another way, a COM object can’t
realistically hand out an interface
pointer and then sit around in
memory waiting for the client to
make an initial call to AddRef.
Typically, the client wouldn’t
bother(!) and the whole raison
d’être behind reference-counting
would be defeated.

In the simplest scenario, a client
would get a pointer to an interface,
use it, and then call Release on that
interface. It would never be
necessary for the client to call
AddRef. Why, then, did Microsoft
bother to implement AddRef at all?
The reason is that an application
might sometimes need to pass a
copy of an existing pointer on to
another client. Under these
circumstances, the COM object
has suddenly acquired another
client without being notified. The
convention is that the new client
(the one that receives the interface
pointer from the existing client)
must call AddRef to notify the COM
object that there are now two
outstanding references.

Note that a COM object can
implement reference-counting on
an interface by interface basis, or it
can use one global reference coun-
ter for all its interfaces. Whether it
makes sense to do things one way
or another depends on a particular
COM object and on the internal
system resources needed to
support a particular interface.

➤ Figure 3: Here we can see GUIDGEN in action. This is a Microsoft
utility that generates unique GUID numbers on demand. For Delphi
developers, the equivalent functionality is already built into the
Delphi 3 IDE. Just type Ctrl-Shift-G and off you go…

34 The Delphi Magazine Issue 28

In Search Of
Global Uniqueness...
By now, I expect you’re frantic to
know all about CLSIDs and GUIDs. If
you’re not, you should be! A GUID
is essentially a very long number
that occupies 16 bytes, or 128 bits.
GUID stands for Globally Unique
Identifier, terminology which is
derived from the Open Software
Foundation’s somewhat presump-
tuous UUID or Universally Unique
Identifier concept. The idea is that
a GUID is so large that it can be
used to uniquely identify an indi-
vidual thing from out of a very large
set of such things. A GUID isn’t
COM specific: you could use it to
distinguish between books in the
Library of Congress (like the ISBN
number), between the shirts in
your wardrobe, or anything else
you liked.

A CLSID is simply a GUID that’s
used to identify a COM class. Thus,
strictly speaking, all CLSIDs are
GUIDs, but not all GUIDs are
CLSIDs. The terms are often used
interchangeably so don’t panic if
you see one where the other ought
to be... It’s important to emphasise
that a CLSID doesn’t identify a
particular object (a specific
instance of a class), but it identifies
the class itself. Thus, in the afore-
mentioned code fragment which
defines the IUnknown class, we saw
that IUnknown is identified by a
CLSID of:

{00000000-0000-0000-C000- 00000000046}

When you create your own COM
classes, you’ll want to use a CLSID
that nobody else has ever used.
How can you ensure uniqueness?

Given that one CLSID uniquely
identifies each COM class the
world over, you might be forgiven
for thinking that you have to go to
Microsoft in order to be allocated a
CLSID for your new COM object.

Well, it’s certainly possible to do
that. If you ask them nicely, Micro-
soft will be very happy to allocate
you a chunk of 100 contiguous
CLSIDs which are registered in the
name of your organisation. But
remarkably, it’s possible to come
up with your own CLSIDs and be
very confident that nobody else

has used the same CLSID for their
use.

C/C++ programmers use a nifty
little Microsoft-supplied utility
called GUIDGEN. When you exe-
cute GUIDGEN, it will instantly gen-
erate a new GUID for you, present it
in one of several different formats
and allow you to copy it to the Win-
dows clipboard for pasting straight
into your development environ-
ment. As ever, things are even nif-
tier for Delphi developers, the
equivalent of GUIDGEN is built
right into the Delphi 3 IDE! Simply
hold down the Control and Shift
keys, hit G and, hey presto, the IDE
will dream up a new, unique GUID
and paste it into the active code
window.

Note that if you’re like me, then
you don’t like taking things on trust
and you’re maybe thinking it’s
pretty unlikely that these auto-
generated numbers are unique.
However, Microsoft’s program-
ming documentation specifically
states that GUIDGEN will never
generate the same GUID no matter
how many times it’s run. If you’re
interested, it uses a number of cun-
ning tricks to achieve numerical
uniqueness. For one thing, it takes
the current date and time into
account, measuring the time to a
high degree of accuracy. It also
uses certain persistent state infor-
mation to guard against the possi-
bility of the clock being moved
forwards or backwards. A ‘forcibly-
-updated’ counter also gets thrown
into the mix, to ensure that num-
bers remain unique when GUID-
GEN is called repeatedly at very
frequent intervals. The software
also looks for an installed network
card and uses the unique network
address of the host machine as

another factor in generating the
GUID! If no network card is present,
then a pseudo machine-identifier is
synthesised from a number of
highly variable machine states
including (but not limited to) RAM
size, hard disk size, processor type
and the installed hardware con-
figuration. Although it is theoreti-
cally possible for the same GUID to
be generated on two different
machines, it’s far more likely that
you’ll hit the Lottery jackpot for
ten weeks consecutively! It would
be rather nice, but I suspect the
Sun will go nova first...

Summary
This month, I’ve looked at how and
why COM came into being, listed
some of the advantages it has over
traditional DLL-based techniques,
and explained the basics of the
IUnknown interface. I’ve also
described how CLSIDs are used to
guarantee planet-wide global
uniqueness between different
COM classes.

COM is a complex subject and
this has been a fairly lengthy
introduction, but it’s not over yet!
Next month, I’ll continue this
series by giving you some more
introductory material, and then go
on to demonstrate how you can
use COM to interact with the
Windows shell courtesy of the
COM extensions built into Delphi 3.

Dave Jewell is a freelance consult-
ant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is Technical Editor of Developers
Review. You can contact Dave as
Dave@HexManiac.com.

	Why Microsoft Needed COM...
	Necessity, The Mother Of Invention
	VBX Controls: Gone, And Best Forgotten...
	The COM Advantage...
	So What’s An Interface?
	Unknown: Mother Of All Interfaces...
	In Search Of Global Uniqueness...
	Summary

